If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+11x-29=0
a = 4; b = 11; c = -29;
Δ = b2-4ac
Δ = 112-4·4·(-29)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-3\sqrt{65}}{2*4}=\frac{-11-3\sqrt{65}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+3\sqrt{65}}{2*4}=\frac{-11+3\sqrt{65}}{8} $
| 2.3x-5.4=6.1 | | f(8)=24/64 | | 6x=+97x | | 2(3x-8)+2(2x-2)=138 | | 2(1+3n)=2(n+4) | | 1/4(x-4)=12 | | 4m+90=98 | | -2y-114/7=-83/21 | | 1/3(x-6)=-8 | | 4/9y=72 | | 0.3(4^0.2x)=0.2 | | -9-6x=7x+4 | | 70+90+x+25=180 | | 6x-86=118 | | 3^y=1/9 | | 8(2x+2)=34 | | -(-2x-4)-(5x-3x+2)=-4x-(-8x+2) | | 8(2x+2)=32 | | 3a+3a-16+2a-19=180 | | 6(2x+2)=25 | | 5(t+6)+4t-3=9 | | 2t+3t-28+33=180 | | (4y-4)=135 | | 3y-26=82 | | 3(t+1)=183t+3=18 | | 6–x=3(x–1) | | 0.6(d–1)=0.5d+4–4+0.2d= | | 5y-7(y+2)=14-2y | | 0.6(d–1)=0.5d+4–4+0.2d | | 39+2p-14+3p=180 | | 3x+3(5x-7)=-3 | | 8x–2–5x+7= |